
South East Technological University
-

Ollscoil Teicneolaíochta an Oirdheiscirt

Fleet Management Project

Research Manual

Student Name: Rachel Doogue

Student Number: C00237335

Supervisor: Dr. Joseph Kehoe

Academic Year: 2022/2023

Abstract 2
Introduction 3
Web Hosting Services 4

In-House Server 4
Cloud Hosting 5
Conclusion 5

Database Languages 6
SQL 6
NoSQL 6
Conclusion 7

SQL Database Management Systems 8
MySQL 8
MariaDB 9
PostgreSQL 9
Conclusion 10

Cross-Platform Frameworks 11
Xamarin 11
Flutter 12
QT 12
Electron 13
Conclusion 14

Development 15
Flutter Environment Set Up 15

Download Flutter 15
Android Studio Plugins 15
Android Studio SDK 16
Android Studio Licence 16
VS Code Extensions 16

Running Flutter on Emulator 17
Create Project 17
Create Virtual Device 17
Run Emulator 18

Flutter and MySQL 19
Flutter and Firebase 20

Conclusion 20
Connect to Firebase 21

Log on to Firebase 21
Install Firebase CLI 21
Install and Run FlutterFire CLI 22
Initialise Firebase 22

Firebase Libraries 22
Dart Code 23

1

References 25

Abstract
The aim of this research manual was to document the findings and conclusion that came
from developing a cross-platform application as a Final Year Student. It documents the
research and thought process that went behind each decision made during both the
theoretical and practical development of the project. With the focus being primarily on
developing the application using Flutter in conjunction with Firebase for backend database
support. Providing steps on how to set up the development environment for Flutter and
Firebase. Alongside this there will be details on how the application was created. Specifically
it will be covering the all important widgets that were used in the creation of the application.

2

Introduction
As part of the final year project for software students this research manual has been
produced in order to document the new knowledge and or skills that have been learnt
throughout project development. The project in question is called ‘Daly Tyres Fleet
Management’. Its purpose is to help a company called Daly Tyres facilitate repair requests
for when vehicles break down.

For this project, research was done first by looking into what I believe were the four main
factors of development that I would encounter, web hosting service, database languages, the
system for managing that database and finally the best cross-platform frameworks. This part
of the research was mostly theory and was used as a starting base for development.

From there the manual will heavily focus on Flutter, Dart and Firebase. As these three
technologies became the main tools used for development.

3

Web Hosting Services
With multiple different users needing access to the fleet management system, all from
varying locations. In order to facilitate this the system will need to be hosted online. There
are many different options available for this service but for the clients needs it will only be
necessary to look at an in-house server and at cloud hosting. Here we will compare and
contrast these two services to determine which service will offer the most effective service
for the client.

In-House Server
To begin with, a server is a computer that is outfitted with computer hardware or software or
both in order to provide services to other computers on the same network [1]. This is a very
broad description and there are many different types of servers. For the purposes of this
project a web or HTTP server is necessary. This type of server is purpose built to store any
files that are needed to build a website [2]. It can also connect to the internet and carry out
HTTP requests [2]. Now with the server type clarified it is time to move onto the pros and
cons of using such a piece of equipment in-house.

On the pro side of having the server in-house, the client will have much more control over
the server when compared to any other option. No one else will have any access to this
server. Control is fully within the clients hands. They will have control of the hardware,
meaning that they can tailor it to their needs [3]. They will have control of the software,
meaning that they can use their preferred operating environment [3]. They won’t be
beholden to any contracts, unlike if they were to use another company's services [3]. This
control is by far and away the single greatest benefit of an in-house server.

However, with this level of control comes many responsibilities. To start with the client will
need to expense the cost of buying the server equipment themselves. From there then the
client will need the technical skills and knowledge in the set up, maintenance and security of
the system [3]. With support needing to be available around the clock as users of the system
will need access at any possible time, day or night [3]. As vehicle maintenance or repairs
can hardly ever be considered to be a convenient occurrence.

4

Cloud Hosting
On the other end of the web hosting spectrum there is cloud hosting. This method, like
before, uses a web server to make the client's system accessible by the internet. However,
unlike before this server is remote [4]. Meaning the is located in a different location from the
main business. These locations are called data centres [4]. Here the client will need to rent
space on another company's server [4]. They will not own the server and they will not be
able to access it physically themselves.

There are many benefits to this arrangement. The equipment is already bought and
operating. This means that not only will the client not need to front the cost of such
expensive equipment [5], they also won’t need any prior knowledge on how to operate a
server. It is already established [5]. All the client has to worry about is creating the files for
the website. Paying for only what they use. Additionally, as these data centres are
specifically built for this function and specialise in this field, they are much more likely able to
provide services at a higher level than a regular non-tech business could. With services such
as the backup of data in case of corruption or loss being a given [5].

All of these pros however, come with a lack of control. The hosting service gets to decide
how they administer their servers. Largely this issue can be worked around as the client can
examine different service providers to find one that suits best. Even then the issue of
downtime is inescapable [5]. If there are any technical issues causing the server to be
unavailable the client will be at mercy of the service provider. Potentially causing the client
and other users great difficulty. There is also the fact that data centres are a major target for
hackers as multiple different companies will be using that service [5]. Meaning that even if
Daly Tyres isn’t the target of such an attack, their data stored there could be swept up in an
attack on another company entirely [5].

Conclusion
Taking into consideration all the pros and cons of each service it is clear to me that cloud
hosting is the much better option. Focusing on the client, Daly Tyres, needs it is unlikely that
they have much if any prior experience with operating a private server before. This coupled
with the expense of purchasing such equipment to set up an in-house server would make
this a costly endeavour. Both in terms of time and resources. Any potential control gained by
an in-house service would be lost in a lack of experience in how to utilise it to its fullest for
the business. While the concerns that come with cloud hosting will still pose an issue for the
client, the high service standards, overall reliability and cost effectiveness make for very
attractive features.

On the development side of the project cloud hosting is much more beneficial for me. It will
enable me to launch the application sooner as there will be no need to set up a server and in
the long run I won’t have to be burdened with maintaining the server myself. This should
allow for a smoother application launch.

5

Database Languages
It is already a certainty that a database is needed. All that is needed for consideration here is
the database language that will be used. Database languages are programming languages
that have been specifically created to be used to access, control and manipulate a database
[6]. With SQL and NoSQL being two of the more widely known database languages, they will
be the two taken into consideration in the following section.

SQL
Standing for Structured Query Language [7], SQL as the name suggests operates based on
a set structure. It can only be applied to databases whose tables conform to its fixed
structure. This applies to how tables are connected, tables consisting of rows and columns
only or how items are labelled [8]. This strict formatting means that there is a high level of
consistency throughout queries. Making it easier to understand between individuals and long
term maintainability. Along with this set structure SQL is also considered to be easier to
understand than other database languages [8]. Not needing someone that is highly
specialised in the language used once again lends itself to its maintainability across
individuals.

At the same time having a language that is so reliant on a set structure has its drawbacks.
Any changes to the structure of the database can heavily affect any SQL queries already
written and make it unusable [8]. This is also what makes it difficult to scale [9]. As
traditionally SQL databases have been scaled vertically. Otherwise, it becomes a very
difficult task to scale horizontally.

NoSQL
Taking the opposite approach NoSQL, standing for Not Only SQL [10], does not rely solely
on tables consisting of rows and columns. Instead it can store data in many different forms.
One of them being document form [10]. This level of flexibility can be a significant assist in
creating a highly customised database. Another benefit of NoSQL’s lack of a set structure is
that it helps it scale horizontally [10]. As data does not need to all be on a single machine.

6

Flexibility does have its drawbacks. NoSQL requires a high degree of effort and time to
understand. Accompanied by the fact that the NoSQL community is not as large as the likes
of SQL [8] owing to its newer creation status, makes NoSQL somewhat of a less reliable
language. As finding others to maintain or expand the database will take more time and is a
slightly more specialised language in comparison to SQL.

Conclusion
Considering that the data that Daly Tyres is going to be handling is of a benign nature the
flexibility that NoSQL affords does not seem necessary. Instead the structure of SQL is
highly appealing. Especially as once completed and control fully handed over it should be
easier for the client to find someone to maintain or even update the system. It is also not
evident at this moment that horizontal scaling would be preferably over vertical scaling and
vice versa. Given these facts, SQL seems a much more suitable database language in
comparison to NoSQL.

This practicality helps save time, as this focus will ensure that very little time is spent on
learning tasks that unlimitedly won’t be needed. Being able to insert documents into the
database may be a nice feature but it would only ever be implemented if there was time to
spare and that would be unlikely. Thus the benefits of NoSQL would be unlikely to be
realised.

For me, SQL is a much more familiar language. The added complexity and size of the
database that will be required should ensure a deeper level of knowledge of SQL will be
needed. While having an added benefit of not needing to learn a new system structure with
NoSQL.

7

SQL Database Management Systems
Now that a database language has been decided upon, the next step is to examine a
number of different SQL database management systems. These services are used to create,
store, access, maintain and update relational databases [11]. While all should offer the same
basic function, it is the mechanics that will set these systems apart.

MySQL

Figure 1: MySQL logo [22].

An open-source database, MySQL has been operating for 25 years [12] and has 5 million
active installations [12], making it the most popular in the world. It is free and operates under
a GNU General Public License [12]. All of that to say that anyone that so wishes can
operate, examine, and modify the software freely [13]. With it supporting numerous popular
programming languages such as Java, Python, C, C++, and many more [12]. Given its
longevity in conjunction with such a large active user base, MySQL can certainly claim to
have a wide ranging support system and documentation [12]. Making it unlikely to run into
any problem that cannot be solved in a timely manner.

With its single greatest downfall being that it struggles when dealing with databases of
substantial size [14], MySQL offers many upsides.

8

MariaDB

Figure 2: MariaDB logo [23].

Similarly to MySQL, MariaDB is free and operates under a GNU General Public License [15].
In fact MariaDB has been developed from MySQL [15]. This means that it shares many of
the features. Including support for all the previously mentioned programming languages [16].

Even though MariaDB was created from MySQL this does not mean that the two are still
compatible. That may once have been the case but now migrating code between the two
now requires work to be done on the code in order to get it to function [17]. This was once a
significant advantage for MariaDB.

PostgreSQL

Figure 3: PostgreSQL logo [24].

Similarly PostgreSQL is a free and open-source database management system [18].
However this is where the system starts to differ from the previous two mentioned. Unlike
before PostgreSQL does not use a GNU General Public License. Instead it appears to
operate under what it calls the PostgreSQL License [19]. Even then it operates under much
the same principles as the GNU General Public License. As it allows for anyone to operate,
examine, and modify the software freely [20]. The next big distinction is that PostgreSQL is
not just a relational database, it is an object-relational database [18]. This means that the
databases can handle data of a more complex nature as it allows objects to be stored [21].
An example of such data would be multimedia content [21], i.e. images, video, audio, and so
on. Otherwise PostgreSQL supports the same languages as mentioned previously [21].

9

Conclusion
Given everything above, using MySQL would appear to be a reasonable choice to make. At
this moment in time the database and the tables included do not appear to need any special
features and are fairly straight forward in their structure. This fact along with its long history
makes MySQL a reliable option, with plenty of support. Its popularity is a testament to this
fact.

With MySQL there are no obvious marks against it, unlike with MariaDB and PostgreSQL.
One of the selling points of MariaDB used to be that it was compatible with MySQL. This
shows a willingness to make major changes to the platform. Something that does not appeal
when taking consistency and maintainability into account. As for PostgreSQL, not so much a
mark against it but, the object-relational databases are not needed. Adding a new licence
makes PostgreSQL appear more unnecessarily complex compared to the others.

Taking all of this into consideration from a personal perspective, MySQL appears to be a
good tool to learn to use. As its widespread use and the fact that it is used as the basis for
other similar applications increases the chance of any experience gained being of us after
the project is completed. Making it a valuable skill to learn.

10

Cross-Platform Frameworks
The client has made it clear that they desire a phone app for drivers to access and did not
specify when it came to all other users. There is no control of the phone operating systems
that the drivers will be using. This means that both Android and iOS will need to be catered
for. For this there are a number of cross-platform frameworks that allow for one application to
be built. That can then operate on more than one operating system. That is what will be
examined in this section. To determine which one is the best suited for this project.

Xamarin

Figure 4: Xamarin logo [43].

As has been seen before, Xamarin is free and open-source [25]. It advertises both tools and
libraries that allow for mobile applications to be developed for Android, iOS, and Windows
[25] from a single codebase. It boasts of a community of 1.4 million developers [26], with
more than 100,000 OSS contributions [25]. This stands for Operational Support System [27]
and is used by Xamarin to help maintain their computer network [27].

It lists three different languages C#, F#, and Visual Basic [25]. To get as close to a native
application as possible Xamarin can use C#, compile that natively and then .NET is used to
implement it to perform cross-platform [25][26]. This in theory should make the mobile
application function as close to a native application than it is in reality.

Despite being free and open-source, if any organisation wants to have multiple developers
working on Xamarin they will need to purchase a business or enterprise licence for Visual
Studio. These licences can get very expensive as an Enterprise Subscription will cost $250 a
month [28]. Fortunately this should not be an issue for this project. It is unlikely now or in the
future anything but a simple Individual version will be required. As this project is a solo
endeavour.

11

Flutter

Figure 5: Flutter logo [44].

Another free and open-source framework [29]. While Xamarin was a product of Windows
[25], Flutter is a product of Google [29]. Once again with Flutter a single codebase can be
used to develop an application that can be deployed for Android, iOS , and desktop [29].

Flutter uses the programming language Dart [29]. This is programming language primarily
used for and by Google applications [30] and as such may not be as widely known as other
programming languages like C#. This specialisation is definitely a drawback, however the
Flutter website has a page on it that has a number of tutorials for developers of different
levels with Dart to practise and learn from [31]. Even then Dart is not so new and out there of
a language as its syntax is similar enough to Java or C++ to draw recognition [32].

Due to certain features such as the Flutter widgets mobile apps have a tendency to be
bulkier than in comparison to native applications. With any application developed on Flutter
being a minimum of 4MB [33]. This is less a problem for developers and more so a problem
for any users as memory on a phone is more limited than that of desktop.

QT

Figure 6: QT logo [45].

While Xamarin and Flutter are by far and away the more popular cross-platform frameworks
[34] there are a number of smaller frameworks that have been around for a far greater
number of years. QT being one of those. Released in 1995 [35] QT is free and open-source,
operating under the GPL 2.0, GPL 3.0, and LGPL 3.0 licences [35].

12

QT has tools to enable cross-platform application development, advertising, its own IDE, and
more [36]. Based on C++ [37] does not have the same learning requirement of a new
language like Flutter.

To get access to certain tools such as the quick compiler, a commercial licence is needed
[38]. This licence starts at $180 a month [39] and while all frameworks that have been
examined have both a free and a paid version, the performance of QT becomes an issue. As
such without the quick compiler starting times for applications can become an issue [38].

Electron

Figure 7: Electron logo [46].

Finally there is Electron, a free and open-source cross-platform framework [40]. Electron is
much more geared toward web application development [40]. It can still be used to deploy to
Android and iOS since that does not appear to be a primary function; it is more likely than
not in among the most popular cross-platform frameworks [34]. Although with there needing
to be three separate web apps for Daly Tyres, the fleet operator and the garage operator, in
comparison for the one mobile app for drivers, this may not be as big of a hindrance than it
first appears.

Similarly to Flutter, the minimum size of the application created is the largest issue at hand.
Electron uses Chromium and Node.js to build its desktop applications [41]. Chromium is over
100MB in size [42]. Therefore any web application that is made with Electron will also have
to come with this extra bulk. No matter how simple the web application is.

13

Conclusion
After taking all of the above into account Xamarin has distinguished itself as a suitable
cross-platform framework for this project. The fact that a business or an enterprise licence
would make the framework an expensive endeavour is not unique to the framework. Even
then the odds of one being needed are extremely unlikely.

Its popularity, especially in comparison to QT and Electron, as shown by its large collection
of OSS contributors is a good indicator that there will be plenty of resources when
implementing the codebase and into the future.

In a similar vein to choosing MySQL, Xamarin is also a widely used platform. Any expertise
gained in using the platform now has a greater chance of being applied later. This also
applies to the language, C#. With Flutter being the next biggest platform researched it
revealed that Flutter uses Dart. This programming language is primarily used for Google
applications. It is much more limited in its use. Being ranked 20th [47] on a list of the most
common programming languages of 2022. In comparison to C# which is ranked 4th [47], it is
clear that C# will have much more utility outside of this project.

14

Development
Now that the theory portion of the research has been done it is time to move onto the
practical. Where the ideas and concepts discussed from before are brought to life. This
portion of the manual will cover any research that arose from that development process. As
well as discuss any issues that were encountered, and the solutions found.

Flutter Environment Set Up
To set up Flutter I used Android Studio, VS Code is also an option. Both are needed to install
flutter and both were already downloaded on my machine. Here is a step by step guide of
that download process.

Download Flutter

1. Download the Flutter SDK for Windows from this website:
https://docs.flutter.dev/get-started/install/windows

2. Extract zipped file using the recommended file path. C:\src\flutter\flutter
3. Copy this path
4. Using the Windows search tool enter ‘Edit environment variables for your account’
5. Under ‘User Variable’ click on ‘Path’ and then click on the edit button.
6. Click on ‘New’ and paste the copied path from step 3
7. Click ‘Ok’ until all the screens just opened are gone
8. Using the Windows search tool enter ‘cmd’
9. Type ‘flutter doctor’ and press enter
10. On screen it will show the requirements needed for flutter

Android Studio Plugins

11. Open Android Studio
12. Click on ‘Plugins’
13. Search for ‘flutter’ and click on install
14. Search for ‘dart’ and click on install
15. Restart Android Studio
16. Using the Windows search tool enter ‘cmd’
17. Type ‘flutter doctor’ and press enter. ‘Android Studio (version 2022.1)’ is now

complete.

15

https://docs.flutter.dev/get-started/install/windows

Android Studio SDK

18. In Android Studio open ‘SDK Manager’
19. Click on ‘SDK Tools’
20. Make sure ‘Android SDK Command-line Tools’ is selected
21. Click ‘Apply’
22. A prompt asking ‘Confirm Changed’ appears, click ‘Ok’
23. Click ‘Finish’ once download is complete
24. Click ‘Apply’ and the ‘Ok’ in the SDK Manager
25. Using the Windows search tool enter ‘cmd’
26. Type ‘flutter doctor’ and press enter. ‘Android toolchain’ is now partially complete.

Android Studio Licence

27. Still in the ‘cmd’ type ‘flutter doctor --android-licenses’ and press enter
28. Type ‘y’ and press enter for all prompts
29. Type ‘flutter doctor’ and press enter. ‘Android toolchain’ is now complete.

VS Code Extensions

30. Open VS Code
31. Click on ‘Extensions’
32. Search for ‘flutter’ and click on install
33. Search for ‘dart’ and click on install
34. Restart VS Code
35. Using the Windows search tool enter ‘cmd’
36. Type ‘flutter doctor’ and press enter. ‘VS Code (version 1.74.3)’ is now complete.
37. The cmd should now look like the figure below

Figure 8: Flutter has successfully been installed

This means that all requirements for installing Flutter on Windows have been met and that
development in either Android Studio or VS Code can now begin. Due to being more familiar
with Android Studio this was my IDE of choice.

16

Running Flutter on Emulator
Having selected Android Studio to develop in, the next step was to create a virtual device.
This is a device that runs on an emulator inside Android Studio. Providing a proving ground
for the Flutter project without the need to continually connect a physical device to the
computer.

Create Project
1. Open Android Studio
2. Click ‘New Flutter Project’
3. Click ‘next’
4. Give the project a name. All lowercase, i.e. my_first_app
5. A counter project is automatically provided by flutter

Create Virtual Device
6. Open ‘Device Manager’
7. Click ‘Create Device’
8. Select ‘Phone’ and select a model from the list provided
9. Click ‘next’
10. Select a system from the list provided
11. Click ‘next’
12. Make any changes that are desired, otherwise just click ‘Finish’
13. Check the ‘Device Manager’ tab. A phone is listed.

Figure 9: Virtual devices on Android Studio

17

Run Emulator
14. Click the arrow head symbol next to the device to launch the virtual device
15. Click on ‘<no device selected>
16. Click ‘Refresh’
17. Click on the name of the device just created
18. Click ‘Run’

Figure 10: Default Flutter app running on virtual device inside Android Studio

Chrome, Edge and Windows are already listed as devices and require no further set up.

18

Flutter and MySQL
One of the first major problems during the development stage was trying to connect the App
to the MySQL database. As Android Studio and Flutter do not have an inbuilt driver to
access MySQL. Upon further research a preferred method for those online is to access
MySQL databases by using PHPmyAdmin [48]. This however is not desirable as it creates
an intermediary between the two applications. Increasing the application’s vulnerability to
cyber attacks.

After some more looking, a library called mysql1 looked promising. Available on pub.dev this
library provides a MySQL driver for the Dart programming language, which is used by Flutter
[49]. However, this too was unsuccessful. As even when the Flutter App would run, the
MySQL would not connect. Although the reasons behind this failure to connect are not
known, it was determined that after so much time spent on the issue with no progress it was
time to move onto an alternative database system.

Figure 11: Flutter code for SQL

This was the code used to try and understand the issue with connecting to the MySQL
database. When executed it does not reach inside the loop. As the log doesn't print to the
console. It also produced this error:

[ERROR:flutter/runtime/dart_vm_initializer.cc(41)] Unhandled Exception: SocketException:
Connection refused (OS Error: Connection refused, errno = 111), address = localhost, port =
47788

19

Flutter and Firebase
With both Android Studio and Flutter being owned by Google [50][51]; it is unsurprising that
other Google products can work with one another without much need for prior setup. As
such using the NoSQL database system Firebase was the next sensible step. This proved to
be the correct step as Firebase was much easier to connect to and had much more
documentation on how to use it in conjunction with Flutter available online.

However, Firebase does use NoSQL and this is a technology that I had no previous
experience in. At the top of the scale Firebase NoSQL stores information in collections.
There can be multiple collections in a database. Within these collections are documents. The
documents are what hold the individual pieces of data. All of the information contained in
the database is stored as a JSON object [52]. The database structure that was initially
thought of for the MySQL database is not compatible with this layout.

Conclusion

Despite the drawbacks in experience and the fact that previous work had to be revised, this
was a necessary change and the right one to make. The compatibility of the two
technologies has allowed for faster progress. Something was sorely needed.

20

Connect to Firebase
Firebase is an online database and requires no direct insulation. Instead you must create an
account and connect to the database over the internet.

Log on to Firebase
1. Go to this page https://firebase.google.com/
2. Click ‘Get Started’
3. Enter any name into the Project Name field
4. Turn off Google Analytics
5. Click ‘Continue’

Install Firebase CLI
6. Click on the Flutter Icon at the top of the screen
7. Follow the instructions
8. Install Firebase CLI
9. Once installed enter the CLI
10. Login with your Google account
11. Install Node.js
12. Using the Windows search tool enter ‘cmd’
13. Enter ‘npm install -g firebase-tools’
14. Copy this path ‘C:\Users\you\AppData\Local\Pub\Cache\bin’
15. Using the Windows search tool enter ‘Edit environment variables for your account’
16. Under System Variable’ click on ‘Path’ and then click on the edit button.
17. Click on ‘New’ and paste the copied path from step 14
18. Click ‘Ok’ until all the screens just opened are gone
19. Using the Windows search tool enter ‘cmd’
20. Enter ‘firebase -V’. If successfully installed the screen will appear as below.

Figure 12: Firebase installed

21

Install and Run FlutterFire CLI

21. Using the Windows search tool enter ‘cmd’
22. Copy and paste the next command given by the instructions into the cmd
23. The second instruction is copied and pasted into a terminal at the root of your flutter

project
24. Set up for any devices you wish. For this project it was all.

Initialise Firebase

25. Copy and paste the next command in the instructions into the main.dart file.
26. Firebase is now ready.

Firebase Libraries
Copy the following commands into a terminal at the root folder for the project:

● flutter pub add firebase_database [66]
● flutter pub add firebase_auth [67]
● flutter pub add firebase_core [68]
● flutter pub add cloud_firestore [69]

All dependencies are available at pub.dev

22

Dart Code
A modern object-oriented programming language, Dart was developed in 2011 and was
developed by Google [53]. The designers of the language are Lars Bak and Kasper Lund
[54]. Its creation was influenced by a number of different languages. Some examples being
Java, JavaScript, C# [65] and TypeScript [55]. Specifically from looking at how the code is
structured, Dart is similar to C. Given all these facts, this gives Dart a strong groundwork for
use in web development.

Its use as Flutter’s main programming language may reveal what was the purpose of
designing such a language. A better performing cross-platform language for development. It
markets itself as

Below is a list of some of the common widgets that were used in the creation of this project.
As well as a brief explanation of their operation and how they were used:

● Text() - this widget was the starting base for much of the project. It displayed the text
that is contained within it to the screen [56].

● TextFormField() - a combination of two widgets, the TextField() and the FormField().
With the former contained inside the latter [57]. This widget was used to receive input
from the user. With the TextField() portion letting the user enter the information [57]
and the FormField() enabled that information to be handled [58]. This combination of
functions made it the perfect widget to use in forms that relied on user inputs.

● TextStyle() - executed from within a Text() or similar widget, it was used to arrange
the composition of the text on display [59]. Such as the font, size and colour of the
text [59]. All text on display for the user has been modified using this class.

● BoxDecoration() - to make clear where users should put their information in the form,
a BoxDecoration() class was extremely useful. It allowed for styling of the
surrounding form field [60]. Such as the shape and colour of the input boxes.

● TextButton() - once a user had filled in a field it was necessary to have an action that
would specify when that information could be handled by the backend. To do this a
TextButton() widget was used. As a button it could have any text written inside it [61].
Making it clear what its purpose was. Most importantly it allowed for an onPressed()
operation to be carried out. This could be anything from a page navigation to another
screen operation, to calling a function to perform an operation on the information
contained inside the form [62].

● Expanded() - creating a space that will take up any screen space that is available to it
[63]. In use this means that if there are two Expanded() widgets in use, each will
occupy half of the available screen space.This widget was used for setting the layout
of each page. To ensure uniformity. It could be orientated either vertically or
horizontally [63].

● Container() - somewhat similar to Expanded(), this widget created a space for its
contents [64]. However, unlike Expanded() it only occupied the same space as the
content specified. Making it a suitable widget to handle each individual element of a
page's layout.

23

24

References
1. Study.com. (n.d.). What is a Server? - Definition & Explanation - Video & Lesson

Transcript. [online] Available at:
https://study.com/academy/lesson/what-is-a-server-definition-lesson-quiz.html.

2. MDN Web Docs. (2019). What is a web server? [online] Available at:
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web
_server.

3. Migrator (2012). Pros and cons of in-house hosting. [online] Available at:

https://www.nibusinessinfo.co.uk/content/pros-and-cons-house-hosting.

4. Labfolder. (2017). Cloud vs local Server - Where should you store your data? [online]
Available at: https://www.labfolder.com/cloud-vs-local-server/.

5. honestproscons.com. (2020). 10 Advantages and Disadvantages of Cloud Hosting.
[online] Available at:
https://honestproscons.com/advantages-and-disadvantages-of-cloud-hosting/.

6. Indeed Career Guide. (n.d.). Types of Database Languages and Their Uses (Plus
Examples). [online] Available at:
https://www.indeed.com/career-advice/career-development/database-languages#:~:t
ext=What%20are%20database%20languages%3F.

7. www.w3schools.com. (n.d.). SQL Introduction. [online] Available at:
https://www.w3schools.com/sql/sql_intro.asp#:~:text=SQL%20stands%20for%20Stru
ctured%20Query.

8. admin (2022). SQL vs. NoSQL: Pros and Cons. [online] W3schools. Available at:
https://www.w3schools.blog/sql-vs-nosql-pros-and-cons.

9. www3.technologyevaluation.com. (n.d.). SQL vs. NoSQL Databases: What’s the
Difference? | TEC. [online] Available at:
https://www3.technologyevaluation.com/research/article/sql-vs-nosql-databases-what
s-the-difference.html.

10. www.couchbase.com. (n.d.). NoSQL Databases – What They Are and Why You
Need One. [online] Available at:
https://www.couchbase.com/resources/why-nosql#:~:text=of%20modern%20busines
ses.-.

11. IBM (2010). What is a database management system? [online] www.ibm.com.
Available at:
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-what-is-database-managem
ent-system.

12. Oracle.com. (2021). What is MySQL? [online] Available at:
https://www.oracle.com/mysql/what-is-mysql/.

13. OpenSource (2019). What is open source? [online] Opensource.com. Available at:
https://opensource.com/resources/what-open-source.

14. W3Schools (n.d.). MySQL advantages and disadvantages - W3schools. [online]
W3Schools. Available at:
https://www.w3schools.blog/mysql-advantages-disadvantages.

25

https://study.com/academy/lesson/what-is-a-server-definition-lesson-quiz.html
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server

15. MariaDB.org. (n.d.). About MariaDB Server. [online] Available at:
https://mariadb.org/about/#policies.

16. MariaDB. (n.d.). Open Source Database (RDBMS) for the Enterprise. [online]
Available at: https://mariadb.com/docs/ent/connect/programming-languages/.

17. opensource.com. (n.d.). Comparing 3 open source databases: PostgreSQL,
MariaDB, and SQLite | Opensource.com. [online] Available at:
https://opensource.com/article/19/1/open-source-databases#:~:text=installed%20with
%20MariaDB.-.

18. PostgreSQL (2019). PostgreSQL: About. [online] Postgresql.org. Available at:
https://www.postgresql.org/about/.

19. www.postgresql.org. (n.d.). PostgreSQL: License. [online] Available at:

https://www.postgresql.org/about/licence/.

20. opensource.org. (n.d.). The PostgreSQL Licence (PostgreSQL) | Open Source
Initiative. [online] Available at: https://opensource.org/licenses/postgresql.

21. IONOS Digitalguide. (n.d.). PostgreSQL: a closer look at the object-relational
database management system. [online] Available at:
https://www.ionos.com/digitalguide/server/know-how/postgresql/.

22. Logo Mysql PNG Images, Free Download - Free Transparent PNG Logos. (n.d.).
Logo Mysql PNG Images, Free Download - Free Transparent PNG Logos. [online]
Available at: https://www.freepnglogos.com/pics/logo-mysql.

23. TM/®MariaDB (2009). The logo of MariaDB – Database management system,
relational, open source, community developed fork of MySQL. [online] Wikimedia
Commons. Available at:
https://commons.wikimedia.org/wiki/File:MariaDB_colour_logo.svg.

24. IconScout. (n.d.). 19 Postgresql Icons - Free in SVG, PNG, ICO. [online] Available at:
https://iconscout.com/icons/postgresql.

25. Microsoft. (n.d.). Xamarin | Open-source mobile app platform for .NET. [online]
Available at: https://dotnet.microsoft.com/en-us/apps/xamarin.

26. AltexSoft. (2019). The Good and The Bad of Xamarin Mobile Development. [online]
Available at:
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/.

27. SearchNetworking. (n.d.). What is operational support system (OSS)? - Definition
from WhatIs.com. [online] Available at:
https://www.techtarget.com/searchnetworking/definition/operational-support-system-
OSS#:~:text=An%20operational%20support%20system%20.

28. visualstudio.microsoft.com. (n.d.). Pricing and Purchasing Options | Visual Studio.

[online] Available at: https://visualstudio.microsoft.com/vs/pricing/?tab=enterprise.

29. flutter.dev. (n.d.). Flutter - Build apps for any screen. [online] Available at:
https://flutter.dev/?gclid=Cj0KCQiA99ybBhD9ARIsALvZavVNnioQW_Mu-fduXOhJnt0
osIzJdOtA1POqNIcNe7wFCoY23HjDO-caAt21EALw_wcB&gclsrc=aw.ds.

30. dart.dev. (n.d.). Who uses Dart. [online] Available at:
https://dart.dev/community/who-uses-dart#:~:text=Google%20engineers%20use%20
Dart%20to.

31. flutter.dev. (n.d.). Learn. [online] Available at: https://flutter.dev/learn.
32. AltexSoft. (n.d.). The Good and the Bad of Flutter App Development. [online]

Available at:

26

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-flutter-app-development
/.

33. AltexSoft. (n.d.). The Good and the Bad of Flutter App Development. [online]
Available at:
https://www.altexsoft.com/blog/engineering/pros-and-cons-of-flutter-app-development
/.

34. Statista. (n.d.). Cross-platform mobile frameworks used by global developers 2020.
[online] Available at:
https://www.statista.com/statistics/869224/worldwide-software-developer-working-ho
urs/.

35. Wikipedia Contributors (2019). Qt (software). [online] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Qt_(software).

36. The Qt Company (2019). Qt | Cross-platform software development for embedded &
desktop. [online] Www.qt.io. Available at: https://www.qt.io/.

37. SCAND. (n.d.). Why Should You Use Qt for Mobile App Development? [online]
Available at: https://scand.com/company/blog/mobile-app-development-in-qt/.

38. www.veprof.com. (n.d.). Advantages and Disadvantages of Using QT for Mobile
Applications. [online] Available at:
https://www.veprof.com/blog/technology/qt-mobile-applications.

39. www.qt.io. (n.d.). Pricing and Packaging | Software Stack | Tech Stack | Qt. [online]
Available at: https://www.qt.io/pricing.

40. www.electronjs.org. (n.d.). Electron | Build cross-platform desktop apps with
JavaScript, HTML, and CSS. [online] Available at: https://www.electronjs.org/.

41. electronjs.org. (n.d.). Introduction | Electron. [online] Available at:
https://www.electronjs.org/docs/latest/.

42. groups.google.com. (n.d.). Size of Chromium codebase. [online] Available at:
https://groups.google.com/a/chromium.org/g/chromium-discuss/c/AiMkyb3_WPg.

43. Xamarin (2010). English: Logo of Xamarin. [online] Wikimedia Commons. Available
at: https://commons.wikimedia.org/wiki/File:Xamarin-logo.svg.

44. flutter.dev. (n.d.). Brand. [online] Available at: https://flutter.dev/brand.
45. Project, Q. (2016). English: Qt framework’s logo. [online] Wikimedia Commons.

Available at: https://commons.wikimedia.org/wiki/File:Qt_logo_2016.svg.
46. Gritskevich, A. (n.d.). Meeting Electron.js – ISS Art Blog | AI | Machine Learning |

Computer Vision. [online] Available at: https://blog.issart.com/meeting-electron-js/.
47. www.orientsoftware.com. (n.d.). Most Popular Programming Languages in 2022 &

Beyond. [online] Available at:
https://www.orientsoftware.com/blog/most-popular-programming-languages/.

48. Grondman, T. (2022). How To Connect Flutter to PHP. [online] Medium. Available at:
https://betterprogramming.pub/how-to-connect-flutter-to-php-8be032df0f55.

49. Dart packages. (n.d.). mysql1 | Dart Package. [online] Available at:

https://pub.dev/packages/mysql1.

50. Wikipedia. (2023). Android Studio. [online] Available at:

https://en.wikipedia.org/wiki/Android_Studio#:~:text=Android%20Studio%20is%20the

%20official.

27

51. www.google.com. (n.d.). flutter ownership - Google Search. [online] Available at:

https://www.google.com/search?q=flutter+ownership&rlz=1C1RXQR_enIE927IE927&

oq=flutter+ownership&aqs=chrome..69i57j0i22i30l4j0i390i650l4.6080j0j9&sourceid=c

hrome&ie=UTF-8.

52. Firebase. (2019). Structure Your Database | Firebase Realtime Database |

Firebase. [online] Available at:

https://firebase.google.com/docs/database/web/structure-data.

53. https://en.wikipedia.org/wiki/Flutter_(software)#:~:text=Flutter%20is%20an%20open

%2Dsource,web%20from%20a%20single%20codebase.

54. Wikipedia. (2023). Dart (programming language). [online] Available at:

https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-5.

55. Anon, (n.d.). The Dart Team Welcomes TypeScript. [online] Available at:

https://news.dartlang.org/2012/10/the-dart-team-welcomes-typescript.html.

56. api.flutter.dev. (n.d.). Text class - widgets library - Dart API. [online] Available at:

https://api.flutter.dev/flutter/widgets/Text-class.html.

57. api.flutter.dev. (n.d.). TextFormField class - material library - Dart API. [online]

Available at: https://api.flutter.dev/flutter/material/TextFormField-class.html.

58. api.flutter.dev. (n.d.). FormField class - widgets library - Dart API. [online] Available

at: https://api.flutter.dev/flutter/widgets/FormField-class.html.

59. api.flutter.dev. (n.d.). TextStyle class - painting library - Dart API. [online] Available at:

https://api.flutter.dev/flutter/painting/TextStyle-class.html.

60. api.flutter.dev. (n.d.). BoxDecoration class - painting library - Dart API. [online]

Available at: https://api.flutter.dev/flutter/painting/BoxDecoration-class.html.

61. api.flutter.dev. (n.d.). TextButton class - material library - Dart API. [online] Available

at: https://api.flutter.dev/flutter/material/TextButton-class.html

62. api.flutter.dev. (n.d.). onPressed property - TappableChipAttributes class - material

library - Dart API. [online] Available at:

https://api.flutter.dev/flutter/material/TappableChipAttributes/onPressed.html

63. api.flutter.dev. (n.d.). Expanded class - widgets library - Dart API. [online] Available

at: https://api.flutter.dev/flutter/widgets/Expanded-class.html.

64. api.flutter.dev. (n.d.). Container class - widgets library - Dart API. [online] Available at:

https://api.flutter.dev/flutter/widgets/Container-class.html.

65. www.javatpoint.com. (n.d.). Flutter: What is Dart Programming - Javatpoint. [online]

Available at: https://www.javatpoint.com/flutter-dart-programming.

66. Dart packages. (n.d.). firebase_database | Flutter Package. [online] Available at:

https://pub.dev/packages/firebase_database/install.

28

67. Dart packages. (n.d.). firebase_auth | Flutter Package. [online] Available at:

https://pub.dev/packages/firebase_auth/install.

68. Dart packages. (n.d.). firebase_core | Flutter Package. [online] Available at:

https://pub.dev/packages/firebase_core/install.

69. Dart packages. (n.d.). cloud_firestore | Flutter Package. [online] Available at:

https://pub.dev/packages/cloud_firestore/install.

29

